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I. EXECUTIVE SUMMARY

The main objectives of this project were: to advance the understanding of the generation,
propagation and breakdown of atmospheric gravity waves owing to mountains; to develop
improved theoretical models for forecasting stratospheric gravity waves under realistic flow
conditions; and to examine the role of gravity waves in the production of turbulence under
various flow conditions.

Towards reaching these goals, the following specific problems have been studied:

(¥) As indicated by balloon measurements, atmospheric buoyancy profiles, apart from a
sharp increase (roughly by a factor of 2) at the tropopause, often feature appreciable oscilla-
tions (typical wave length 1-2 km) with altitude. Based on numerical solutions of the Euler
equations, we find that such short-scale oscillatory variations of the background buoyancy
frequency, which usually are ignored in theoretical models, can have a profound effect on
the generation of mountain waves owing to a resonance mechanism that comes into play at
certain wind speeds depending on the dominant oscillation wave length. As suggested by
our earlier asymptotic results for small-amplitude sinusoidal oscillations, comprehensive nu-
merical studies for more realistic flow conditions confirm that, under resonant conditions,
the induced gravity-wave activity is significantly increased, often resulting in wave breaking
above and upstream of the mountain, similarly to resonant flow of finite depth over topog-
raphy. This piece of work forms part of the doctoral thesis of I. Skopovi (completed, May
2006). For technical details, see Sec. A below.

(ii) The effects of unsteadiness in the wind have received relatively little attention in prior
studies of mountain gravity waves. To fill this gap, the effect of temporal variations in the
wind velocity was studied. Motivated by field observations, which typically exhibit strong
oscillatory fluctuations about a steady mean, we considered the case of a time-harmonic com- .
ponent superposed on a constant wind. We find that, for relatively short (on the order of min.)
wind fluctuations, the unsteady wind component can be safely averaged out. On the other
hand, for larger-period (hours or days) fluctuations, the effect of unsteadiness is very signifi-
cant. In particular, steady flow states, predicted on the assumption of uniform wind, may not
be attainable owing to transient wave breaking. This forms the second part of 1. Skopovi’s
doctoral thesis (May 2006). For technical details, see Sec. B below.

(iii) Recent balloon measurements in the course of the French gravity wave campaign in-
dicate that low-frequency (hydrostatic) gravity waves are ubiquitous in the atmosphere. These
are large-scale disturbances (horizontal length of hundreds of km) for which the effects of the
Earth’s rotation cannot be neglected. In an effort to understand how energy gets transferred to
such low-frequency motions, we studied the nonlinear evolution of a non-hydrostatic wave-
train as it propagates upwards in the atmosphere. We find that the envelope of the wavetrain



can interact resonantly with low-frequency gravity—inertial wave modes. This resonant inter-
action causes radiation of energy away from the gravity wavetrain, forming a trailing wake
of gravity—inertial waves. Moreover, the gravity wavetrain may experience rapid wavenum-
ber variations in certain locations, where eventually caustics form, signaling the onset of a
breakdown process. This is joint work with Dr. Ali Tabaei, who was supported by the grant
as a post-doctoral research associate. Techinical details can be found in a forthcoming article
in Studies in Applied Mathematics (Tabaei & Akylas 2007).
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II. TECHNICAL DESCRIPTION

A. Effects of Buoyancy-Frequency Oscillation on the Generation of Mountain Waves

The flow of wind over mountain ranges is believed to be one of the primary generation
mechanisms of gravity waves in the atmosphere. Typically, mountain waves develop instabil-
ities as they propagate upwards in the atmosphere and eventually breakdown into turbulence.
There is now increasing evidence (Eckermann and Preusse [11]) that breaking mountain
waves in fact contribute significantly to turbulence activity in the upper troposphere and lower
stratosphere, at altitudes 10-15 km, and several accidents in high-altitude aircraft flights have
been attributed to unexpected mountain-wave-induced stratospheric turbulence (Eckermann
et al. [10]).

From a theoretical point of view, the generation of internal gravity waves by stratified flow
over topography is a classical problem of fluid dynamics. Early work used linear models to
study the formation of two-dimensional disturbances on the lee side of the topography — the
so-called lee-wave problem — under perfectly uniform background flow conditions (constant
wind-velocity and buoyancy-frequency profiles). For these idealized flow conditions, and on
the further assumption of steady flow, there is also a nonlinear analytical model (Long [17])
that has been used to explore wave breaking of two-dimensional disturbances over finite-
amplitude topography (see Baines [1] for a comprehensive review).

In the atmosphere, however, the buoyancy frequency and the wind speed are far from uni-
form. Typical profiles, from balloon measurements in the lee of Mt. Washington, are shown
in Fig. 1. The mean profiles vary significantly with altitude near the tropopause, the border-
line between the troposphere and the stratosphere. In this instance, the tropopause is at about
12 km from the ground and the mean buoyancy frequency increases by roughly a factor of
2 there. In addition, the buoyancy-frequency profile and to a lesser extent the wind speed
exhibit appreciable fluctuations on a lengthscale of 1-2 km about their mean values.

In more recent theoretical work, attempts have been made to account for the effect of non-
uniform background buoyancy frequency. Extending Long’s model, Durran [9] studied non-
linear steady-state hydrostatic disturbances over finite-amplitude topography for buoyancy-
frequency profiles with two layers of uniform stratification, the interface modeling the tropopause.
Depending on the height at which the buoyancy-frequency jump is positioned, the streamline
deflections can be maximized/minimized over the topography, thus enhancing/suppressing
wave breaking in comparison with the predictions of Long’s model. This tuning/detuning
effect persists for continuous buoyancy-frequency profiles with a smooth transition at the
tropopause, as demonstrated by Davis [8].

For the purpose of forecasting mountain waves in the field, Eckermann and co-workers
[7] recently devised a hybrid methodology, combining linear theory to estimate the near-
field response close to the topography, with a ray-tracing technique that accounts for gradual
variations of the buoyancy frequency and wind speed in the far field.

In the present work, we study a model of stratified flow over topography that accounts
for the tropopause as well as possible oscillatory variations of the background buoyancy fre-
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Fig. 1 Balloon measurements in the lee of Mt. Washington (a) buoyancy frequency, and (b) flow speed as a function of altitude
(courtesy of Dr. R. Beland).

quency. Thé potential significance of the latter was pointed out in Prasad and Akylas [20]
using an asymptotic theory for stratified flow with constant mean buoyancy frequency near
the hydrostatic limit. Under these special flow conditions, the presence of small sinusoidal
variations in the buoyancy frequency can have a dramatic effect owing to a resonance mech-
anism brought about by the coupling of the internal gravity waves with the background flow
variations. As suggested by Phillips [19], this wave-background-flow interaction causes trap-
ping of the disturbance close to the topography; as a result, near certain critical flow speeds,
the response behaves similarly to resonant flow of finite depth, exhibiting significantly in-
creased gravity-wave activity over the topography as well as upstream influence in the form
of solitary waves and bores.

Here we explore this resonance mechanism under more realistic flow conditions by solv-
ing the Euler equations using numerical methods. It turns out that periodic variations of the
buoyancy frequency continue to play an important part even when the mean buoyancy profile
is not constant due to the presence of the tropopause, although strictly the theory of Prasad
and Akylas [20] is no longer valid. As the lengthscale of the assumed buoyancy-frequency
oscillations is comparable to the vertical wavelength of the induced gravity waves, the effects
of such short-scale variations cannot be captured by ray tracing.

Preliminaries

We shall use the same non-dimensional formulation as in Prasad and Akylas [20] for in-
viscid incompressible flow over localized topography with horizontal lengthscale L and peak
amplitude H. Denoting the upstream flow speed by Up and by Ny a characteristic value of the




Brunt-Viisild (buoyancy) frequency, the flow is governed by three independent parameters

p=il, =20, p=C (1>
0 0 g

g being the gravitational acceleration. The Boussinesq parameter 8 is a measure of strati-
fication; the long-wave parameter (4 and the amplitude parameter € control dispersive and
nonlinear effects, respectively.

Employing L and Uy/Ny as the characteristic lengthscales along the horizontal (x-) and
vertical (y-) directions, respectively, and L/Uj as the timescale, the governing equations (in
the Boussinesq limit, 8 — 0) for the velocity field u = (u, itv), and the perturbations of density
Bp and pressure p from hydrostatic equilibrium, are

V.-u=0, 2)
pr+u-Vp—N>v=0, 3)
u+u-Va=—(py,u"2(p + py)). 4)

Here N(y) denotes the background Brunt-Viisild frequency, defined by
py=—BpN?, ©)

in terms of the background density p (y). Moreover, the boundary condition on the topography
y = €h(x) reads
= eu? = €h) (6)
V= Eu— (y=¢€h).
In the present study, it will be assumed that the Brunt—Viisiléd frequency consists of a
mean profile with oscillations superposed on it. Denoting by A the typical lengthscale of the
oscillations, this introduces an additional parameter which we take to be
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In Prasad and Akylas [20], the parameter F plays the role of a Froude number as it defines
the critical-flow regime in which resonance occurs, in analogy with resonant flow over topog-
raphy in a channel of finite depth (Grimshaw and Smyth [13], Grimshaw and Yi [12]).

Specifically, the theory of Prasad and Akylas [20] applies to the nearly hydrostatic re-
sponse (i < 1) in the case that small sinusoidal oscillations of wavelength A are superposed
on a uniform mean buoyancy profile:

N*(y) = 14 p* {q1sin(2Fy) + gacos(2Fy)} ®)

For this choice of N, the background flow is nearly uniformly stratified and, according to
Long’s model, the steady-state response, to leading order in 4, is a columnar sinusoidal dis-
turbance with wavelength equal to 27 in the vertical direction; the weak background-flow
variations in (8), small deviations from the hydrostatic limit, and unsteady-evolution effects
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merely modulate this columnar disturbance. Accordingly, the perturbation streamfunction v,
in terms of which u = 1+, v = —,, is posed as
y={A(xY,T)e? +cc}+0(u?), 9)

where cc denotes the complex conjugate, and the asymptotic theory furnishes an evolution
equation for the complex envelope A of the columnar disturbance as a function of the stream-
wise coordinate x, the ‘stretched’ vertical coordinate ¥ = p?y and the ‘slow’ time T = u?t.

From Phillips [19], resonance is expected to occur when the wavelength of the background-
flow variations is about one half of the response wavelength, so F' = 1. Setting then

F=1+op? (10)

o = 0(1) being a resonance detuning parameter, it follows that the linear (¢ < 1) hydrostatic
response is governed by the evolution equation

Ar —iAy — 1Y QAL =0, (11)

where A* is the complex conjugate of A and Q = g5 — igy; the last term of this equation
accounts for the coupling of the induced columnar disturbance with the mean-flow variations.
In addition, from (6) and (9), the linearized boundary condition on the topography is

a=-Sh(x)  (¥=0), (12)

where a is the real part of A.
The critical Froude number at which resonance occurs can be found by solving equation
(11) subject to (27) for the steady-state linear hydrostatic response. To this end, we write

A =AY (13)

so that, upon substitution into (11), A satisfies an evolution equation with constant coeffi-
cients. The steady version of this equation corresponds to the following equation system

od+by —tgda+1q1b=0, (14a)
ob—dy+Liqia+igb=0 (14b)

in terms of the real and imaginary parts of A = a4+ ib. Moreover, 4 must satisfy the boundary
condition (27). The solution is found to be

__¢& —s¥ s _E . qitds oy
a= 2h(x)e , b= 2h(x)q2+40'e , (15)
where
s?=-o+ 1—16 (q%+q%) . (16)

From (15) and (16), it is clear that the steady-state response becomes singular, and hence
resonance occurs, when
‘o=-1p, q>0 an




Combined with (10), this in turn determines the critical Froude number F = Fj,

Fair=1-1qp®  ¢1>0 (18)

at which the flow is resonant according to the linear hydrostatic theory.

Prasad and Akylas [20] examined the implications of this resonance based on the evolution
equation satisfied by the complex envelope A — the nonlinear, weakly dispersive analogue of
(11) — which is valid asymptotically when small sinusoidal variations are present on an other-
wise uniform Brunt-Viisilad frequency in nearly hydrostatic nonlinear flow over topography)
Here we explore the role that this resonance plays under less restricted flow conditions by
solving the full Euler equations (2)—(4) numerically.

Uniform mean buoyancy-frequency profile

We have constructed a numerical model for solving the Euler equations (2)—(4) for strat-
ified flow over topography with uniform wind speed but general buoyancy-frequency profile
far upstream. Since the flow domain is unbounded, a major issue is how to avoid artificial re-
flections at the boundaries of the computational domain. For this purpose, the model employs
absorbing viscous layers at the upper and lateral boundaries. A description of the numerical
procedure along with details of implementation can be found in the Appendix.

In all our computations, we have used the algebraic topography profile, also known as

‘Witch of Agnesi’,
1

h(x) - 1 +x2a (19)
and have taken € = 0.6, for uniformly stratified (N =1) hydrostatic flow over the topography
(19), according to Long’s model, nonlinear effects come into play roughly above this value
of £ which, however, is still well below the critical value of € = 0.85 required for overturning
(wave breaking).

Our first choice of flow conditions mimics those considered in Prasad and Akylas [20],
namely the upstream buoyancy-frequency profile is given by (8) with p2q; = 0.25 cosg,
p2qy = 0.25 sing (=7 < ¢ < 7). (The sinusoidal oscillations are terminated at y = 127 and
above this height the buoyancy frequency is held constant at N = 1; the numerical stratifica-
tion profile thus comprises 12F oscillation periods, in contrast to the asymptotic theory that
assumes infinitely many oscillations.) According to (18), for this choice of p2qq and pqy,
resonance is possible when —7/2 < ¢ < 7/2; for any ¢ in this range, the critical Froude
number then is given by
sing

16

As a first example, we take ¢ =0 and F =1, corresponding to exact resonant conditions .
according to (20). Fig. 2(a) shows streamline patterns for this set of parameters and 4 =1/6
at t =50 and ¢ = 150, while Fig. 2(b) contrasts the response at ¢ = 150 against the solution
we would have obtained at the same time in the absence of buoyancy-frequency oscillations
far upstream; by ¢ = 150, the response for constant N has essentially reached the steady state

Feie =1~ (20)



predicted by Long’s model. It is evident that the variations of the Brunt-Viéisila frequency
alter the nature of the flow dramatically: the gravity-wave activity is markedly increased over
the topography, the streamline peak amplitudes associated with the resonant response at ¢ =
150 being nearly twice as large as those of uniformly stratified flow. In the resonant response,
moreover, we see the emergence of upstream-wave propagation along with a disturbance
of opposite sign forming on the downstream side of the topography. This behavior, which
is characteristic of resonant flow in a channel of finite depth (Grimshaw and Smyth [13],
Grimshaw and Yi [12]), was also found in Prasad and Akylas [20] and must be attributed to
the trapping effect caused by the interaction of the induced disturbance with the background
buoyancy-frequency oscillations. In the asymptotic theory, the response was tracked in terms
of the scaled time T = u?t, corresponding to significantly larger values of ¢ than those in Fig.
2; at such later times, typically, wave breaking occurs and the upstream disturbance evolves
into solitary waves or bores.

Fig. 3 shows two snapshots of the response for p=0.05, F =1 and ¢ = x/3 instead of
¢ =0. From (18), this change of the phase ¢ lowers the value of the critical Froude number
to Fep =0.957 so F =1 is supercritical under the present flow conditions. As a result, the re-
sponse in Fig. 3 is quite different from that shown in Fig. 2(a): the streamline peak amplitudes
are generally smaller, there is no upstream-wave propagation, and apparently steady state is
approached as the transients are swept downstream. Fig. 3 also shows, for comparison, the
hydrostatic steady-state response corresponding to the present flow conditions, as obtained
following the numerical procedure of Davis [8]; this confirms that the unsteady response in-
deed reaches steady state. On the other hand, by lowering the Froude number to the critical
value of F =0.957 given by (18), the response again becomes resonant (see Fig. 4). (We
remark that the smaller value of u =0.05, which is closer to the hydrostatic limit, rather than
p=1/6, was used in Fig. 3, only to facilitate comparison against the hydrostatic steady state;
the difference between the resonant and non-resonant behavior is controlled by F and is not
affected by this choice of p.)

The results of fully numerical simulations reported above support the conclusions reached
by the asymptotic theory of Prasad and Akylas [20]. Superposing sinusoidal variations on
a uniform mean buoyancy-frequency profile indeed causes trapping of gravity wave distur-
bances in the vertical direction, and the flow behaves as if it were in a channel of finite
depth. The response turns out to be very sensitive to small changes in the background-flow
conditions and, near the critical Froude number, features increased gravity-wave activity and
upstream influence. In the following section, we explore the role of this resonance mechanism
when the buoyancy profile takes into account the tropopause.

Effects of the tropopause

We shall model the transition from the troposphere to the stratosphere by the dimension-
less mean buoyancy-frequency profile

(N) = 1.5+0.5tanh2(y — d), 21)



Fig. 2 Resonant response for F=1, ¢ =0 and p=1/6 (a) evolution in time: dashed line =50, solid line z=150; (b) comparison
between the resonant response (solid line) and the solution for uniform buoyancy frequency profile (dashed line) at r =150.

where d is a parameter that controls the tropopause height. Consistent with Fig. 1(a), the
profile (56) is such that (N) varies smoothly from 1 in the troposphere (y < d) to 2 in the
stratosphere (y>> d). Referring to Fig. 1, a typical value of the mean buoyancy frequency
in the troposphere is No = 0.01sec™! and the wind speed is in the range 5-30 m/sec, so
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Fig. 3 Non-resonant response for F=1, § =7 /3 and p=0.05 at =50 (dotted line) and £ =100 (dashed line). The corresponding
hydrostatic steady-state solution (solid line) is also shown for comparison.

Fig. 4 Time evolution of resonant response for F =0.957, ¢ =x/3 and pt=1/6: dashed line =50, solid line #=150.

the characteristic lengthscale Uy/Np ~ 0.5 — 3 km. Generally, the atmospheric tropopause
height varies from 10 to 14 km which, in terms of the dimensionless parameter d, would then
correspond to d ~ 5-25.
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The steady-state hydrostatic response for a two-layer buoyancy-frequency profile with
a finite jump at the interface of the two layers was studied by Durran [9] and later Davis
[8] considered the same problem for a continuously varying buoyancy frequency as in (56).
They both find specific tropopause heights for which the hydrostatic steady-state response
exhibits enhanced or reduced gravity-wave activity. For € = 0.6, for example, such ‘tuned’
and ‘detuned’ gravity-wave flow fields occur when the tropopause is placed in the vicinity
of d=21 and d =25, respectively. In fact, consistent with Durran [9] and Davis [8], we find
multiple ‘tuned’ and ‘detuned’ responses that recur periodically with changing d, the lowest
value of d that corresponds to a ‘tuned’ response being in the neighborhood of d=6.

For two-layer buoyancy-frequency profiles with sharp interface, Durran [9] and Davis [8]
also noted that their numerical procedures failed to converge to a hydrostatic steady-state
solution at certain tropopause heights. While Durran [9] suggested that this anomaly could
indicate a nonlinear-resonance phenomenon, Davis [8] attributed the lack of convergence to
numerical difficulties.

For the purpose of validating and clarifying the steady-state results of Durran [9] and
Davis [8], we have carried out unsteady numerical simulations using the buoyancy-frequency
profile (56) close to the hydrostatic limit (4 =0.05). We find that the unsteady response gener-
ally approaches the steady state predicted by the previous studies; a typical example is shown
in Fig. 5 for d =3. We also investigated the nature of the response for buoyancy profiles with
sharp transition at the tropopause for the values of d at which Durran [9] and Davis [8] ex-
perienced difficulties converging to a hydrostatic steady state. Near these special values of d
(d=4.5,11,17.3,23.5,...), it turns out that the steady-state response approaches the uniform
stream far upstream and downstream much more slowly than Long’s solution, and a suffi-
ciently large computational domain is required along x in order to achieve convergence (see
Fig. 6). Also our numerical simulations indicate that the corresponding unsteady response
tends to steady state, albeit relatively slowly, and there is no sign of a nonlinear resonance.

Next, we superpose on the mean buoyancy profile (56) sinusoidal oscillations similar to
those used in (8) for the uniform mean profile:

N%(y) = {1.5+0.5tanh [2(y — d)]}* + u2 {gisin(2Fy) + gzcos(2Fy)} 22)

with 2g; = 0.25 cosd, 12gy = 0.25 sing as before. Fig. 7 shows the unsteady response for
p=1/6,¢=0and F=1 at =50 and ¢ =150 when the tropopause is placed at d =21.
Note that, for uniform mean buoyancy frequency equal to 1, this choice of flow parame-
ters would correspond to resonant conditions in the troposphere (y < d) according to (20),
but for the buoyancy-frequency profile (22), which includes the tropopause, strictly the reso-
nance equation (20) is no longer valid. Nevertheless, upon comparing Fig. 7 with Fig. 2, the
salient features of resonant response identified earlier — increased wave amplitudes over the
topography and upstream-wave formation — are still present, suggesting that the resonance
mechanism persists when the tropopause is taken into account; even when trapping occurs
in the troposphere only, resonance is still possible. Finally, Fig. 8 shows the response for the
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Fig. 5 Comparison of the response for tropopause height 4=3 and g =0.05 at t = 50 (dashed line) with the corresponding
hydrostatic steady-state solution (solid line). At this time, steady state has essentially been reached below y=3.

Fig. 6 Contrast between Long’s solution (solid line) and the steady-state hydrostatic response for d=23.25 computed using a
domain of width x= %50 (dotted line) and x= %100 (dashed line).

same flow parameters as in Fig. 7 but with ¢ =7 /3. As expected, this response is not resonant
and approaches steady state as the non-resonant case shown in Fig. 3.
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Fig. 7 Time evolution of resonant response for F=1, ¢ =0 and p=1/6 in the presence of a tropopause at d = 21: dashed line
t=>50, solid line t =150.

| W:\/”:f:

Fig. 8 Response at t =150 for the same flow parameters as in Fig. 7 but with ¢ =7/3.

The results from numerical simulations of stratified flow over topography reported here
suggest that periodic oscillations in the background buoyancy frequency cannot be ignored.
A study of more general (quasi-periodic, unsteady) short-scale variations in the background
flow conditions is currently under way.
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Numerical method for unsteady computations

The unsteady Euler equations (2)-(4) were solved using the second-order projection method
developed by Bell and co-workers [3-5]. Lamb [15] implemented this procedure to uniformly
stratified finite-depth flow over locally confined topography and Skopovi [21] allowed for
variations in the buoyancy-frequency profile. Here, we apply the numerical scheme to strat-
ified flow of large depth over topography by introducing viscous layers that dissipate dis-
turbances leaving the inviscid region and thus avoid reflections from the boundaries of the
computational domain.

For this purpose, we solve the governing equations (2)-(4) with the viscous term v/( pru +
u,,) added to the right-hand side of the momentum equation (4). Here v denotes a spatially
varying dimensionless viscosity that is distributed within viscous layers around the inviscid
region. Specifically, near the upper boundary,

—0.1u"'si Y—Yoom
v=0.1u Sm(60—y02 , (23)

so v increases gradually from zero at the lower edge (y=yp) to v=0.1u~! at the upper
edge (y=60) of the viscous layer. The upper edge coincides with the top boundary of the
computational domain. In the side layers, to ensure numerical stability at the inflow and
outflow boundaries, the viscosity is first increased in a way analogous to (55), then is held
constant at 0.1p~1 for M number of grid points and finally is brought back to zero again
sinusoidally over the span of M points (see Skopovi [22] for details).

In all simulations, we used yp =41, while M =50 for computations with g=1/6 and M =
25 for runs with g =0.05. A typical contour plot of the viscosity profile is presented in Fig.
11 from which it is evident that nearly two thirds of the computational domain are occupied
by absorbing layers. In order to accommodate the bottom boundary of the computational
domain where we enforce the inviscid boundary condition (i.e. zero velocity perpendicular to
the topography), viscosity in the lateral absorbing layers is linearly increased in the vertical
direction from zero at the topography to the layer value over 20 grid points, as indicated by
curving contours in the bottom left and right corners of Fig. 11.

The numerical method of solution was tested in various ways. First we verified that the
nearly hydrostatic unsteady response for uniformly stratified flow over topography converges
towards Long’s steady-state solution. This was a rigorous test of the performance of the upper
viscous layer, as in the absence of oscillations in the stratification profile, disturbances are not
trapped so all energy is radiated upwards. Secondly, as a test of the lateral absorbing layers,
we compared the response using viscous layers at x =118 against that obtained when the
layers are positioned at x==10. Typical results are shown in Fig. 10 from which it is apparent
that the layers are effectively absorbing waves exiting the inviscid region without impacting
the flow field within the region of interest. We remark that this comparison is made at t=150,
which corresponds to the largest time at which we present our unsteady results. Lastly, we
verified that our numerical results did not vary appreciably when the spatial resolution was
changed.
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Fig. 9 Contour plot of the viscosity profile for simulations in Fig. 2. Viscosity is gradually increased from the inviscid region
(white) to the maximum value 0. 1;,1‘1 (black).
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Fig. 10 Comparison of the resonant response for F=1, u=1/6, ¢ =0 and =150 when absorbing layers are positioned at
x=10 (dashed line) with the response obtained for the same set of parameters when the inviscid region extends-to x==+18
(solid line).

Following Lamb [15], we have used a quadrilateral grid with the higher resolution in the
vicinity of the obstacle. The grid is linearly stretched along both the horizontal and the vertical
such that the height of the bottom cells is 15 times smaller than the height of the cells at the
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upper boundary, while the width of the middle cells is 15 times smaller than the width of
the left- and right-boundary cells for simulations where u=1/6, and 10 times smaller for
runs where ¢ =0.05. All simulations are carried out on a numerical domain that contains 245
cells in the vertical direction. In the horizontal direction, 1200 cells were used for flows with
1 =1/6 and 800 cells for flows with pt =0.05. In all runs, the width of the numerical domain
is x € [~30,30] when p=1/6 and x € [—15,15] when p =0.05. The only exception is the
simulation in Fig. 10 with the viscous layers starting at x==10, which is produced with 860
cells in the horizontal direction and the lateral boundaries of the computational domain at
x=+£20. Lastly, in regard to temporal discretization, upon impulsively accelerating the flow
from rest, we use the time step A#=0.015 for runs with £ =1/6 and Az= 0.02 with  =0.05.
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B. Effects of Temporal Variations in Wind Velocity on the Generation of Mountain
Gravity Waves

The vast majority of previously conducted studies on the subject of stratified flows over to-
pography, primarily for mathematical tractability and computational cost, assumes a constant
background velocity. It is generally known, however, that a typical atmospheric free stream,
in addition to exhibiting spatial variations, regularly fluctuates with time. In this study, we are
interested in the effect of these temporal modulations.

On the theoretical side, one of the first comprehensive efforts to account for time variations
in the wind velocity is the work of Bell [6] who in 1975 derived the linear steady-in-the-mean
solution for a horizontally incident and sinusoidally oscillating background velocity with
zero mean. He established that the equation governing his model is nonlinear with respect
to the basic flow. As a result, internal gravity waves in his model were produced not only at
the fundamental frequency, but also at all of its harmonics. Later, Bannon and Zehnder [2]
constructed a model that is more appropriate for atmospheric conditions by adding a steady
component to the sinusoidally varying free stream of Bell [6]. In spite of the fact that it is
restricted to a hydrostatic mountain, their linear steady-in-the-mean solution encompassed the
Coriolis acceleration and provided perhaps the first insight into the importance of temporal
modulations in the atmospheric context by indicating that the instantaneous mountain drag
may be larger than that exerted by the steady wind. We also cite the work of Hines {14] who
allowed the steady portion of the background velocity to vary with height, but slowly so that
the WKB approximation can be used to analyze the resulting flow field. Although Hines’s
linear analysis is the first substantial effort to consider simultaneously shear and unsteadiness
in the basic flow, it is rather limited to a monochromatic mountain profile.

Among computational studies, we point out the work of Lott and Teitelbaum [18] who
investigated the formation of unsteady linear gravity waves in a free stream that starts from
zero and returns to zero after a finite time. Their analysis is limited to a monochromatic
topography, but it includes effects of shear. We also acknowledge the work of Eckermann
and co-workers [7] who, for the purpose of forecasting mountain waves in the field, recently
devised a hybrid methodology. This approach combines linear theory to estimate the near-
field response close to the topography with a ray-tracing technique that accounts for gradual
variations of the buoyancy frequency and wind speed in the far field.

These previously conducted studies that account for temporal changes in the background
velocity possess several limitations. Primarily, they are linear in nature and they neglect short-
scale buoyancy frequency variations. In the work of Prasad and Akylas [20] and later Skopovi
and Akylas [23], these mechanisms have been found to play a substantial role in shaping the
character of the response with the steady free stream. At this point, therefore, a natural ques-
tion to ask is how does the flow behave in the absence of these constraints. In an attempt
to answer this question, we first derive the linear hydrostatic steady-in-the-mean solution for
sinusoidally oscillating background velocity, which is valid for an arbitrary Brunt—Vaisild
frequency. The solution and details of its numerical implementation are discussed in the fol-
lowing section. Furthermore, we construct a nonlinear computational model capable of sim-
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ulating the flow field generated by the time-varying background flow. Implementation details
of the model are presented. Equipped with these two tools, we explore the significance of
nonlinearity by examining the response due to a gradually increasing background flow from
zero to a constant value in the presence of uniform stratification. Following this effort, we
turn our attention to 1-2 km modulations in the buoyancy frequency. We explore their im-
portance by considering the transient response to the basic velocity that is the superposition
of a uniform stream and harmonic oscillations. Specifically, we concentrate on frequencies
that are of the order of the atmospheric Brunt—Viisild frequency and finally we analyze the
behavior at periods that are of the order of hours.

Linear Theory for Monochromatic Variations

We shall use the same non-dimensional formulation as in Prasad and Akylas [20] for
inviscid incompressible flow over localized topography with horizontal lengthscale L and
peak amplitude H. Denoting the upstream flow speed by Up and by Ny the characteristic
value of the Brunt-Vdisiléd (buoyancy) frequency, the flow is governed by three independent
parameters

U _HNo g Nolo
NL ~ U’ Y g
g being the gravitational acceleration. The Boussinesq parameter 8 is a measure of strati-
fication; the long-wave parameter p and the amplitude parameter € control dispersive and
nonlinear effects, respectively.

Employing L and Uy/Ny as the characteristic lengthscales along the horizontal (x-) and
vertical (z-) directions, respectively, and L/Uj as the timescale, the governing equations (in
the Boussinesq limit, B — 0) become

p= (24)

o 9
—+ U= ) (Ve + 12W) — 1= €7 (W, W + 12 W) (252)
ot ox

o 9 -

(97+U-a—x) r+ N2y, = eJ(y,1), (25b)

where J(a,b) = a,b, — asb,. In these expressions, ¥ is the perturbation stream function,
which physically denotes the deflection of a streamline from the hydrostatic value it possesses
far upstream of the obstacle. It is physically defined as (i, uw) = (U + €y, —€y;) where u and
w are respectively horizontal and vertical velocity components. Moreover, U(z) denotes the
background flow velocity, N represents the buoyancy frequency while £Br is the pretrubation
denisty.

In order to complete the mathematical formulation of the problem under consideration, we
need to specify boundary conditions. Due to the fact that the topography is presumed to be
locally confined in the horizontal direction and the fluid is considered to be infinitely deep,
we require

yv=0and r=0 at x==oo and z=Hoo. (26)
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Along the bottom boundary, on the other hand, the velocity component perpendicular to the
barrier is zero, which in turn implies that the scalar product of the velocity and the unit vector
orthogonal to the mountain is zero. Algebraically, this can be written in terms of y as

dh
—Yx = (U+ey,) at z=¢eh(x), (27)
where h(x) designates the topography profile. At this point, it is simportant to emphasize that
in all simulations in this study, we use the topography profile
1
h=
1 +x2

popularly known as the algebraic mountain or Witch of Agnesi.
We commence the derivation of the linear steady-in-the-mean solution that accommodates
any stratification by defining the Fourier transform and its inverse with respect to x as

(28)

FHy) = / ve ®dx and FYP} = éln‘ / et dk. (29)
Taking the transform (29) of our governing equations (25) in the limit £ — 0 then yields
P 2
(5 + 'kU) (=K + ) — NK2§ =0, (30)

Following Bell [6], (30) can be mathematically simplified by introducing the horizontal co-
ordinate (£) traveling with the time-varying free stream. In terms of x and U, & is defined
as

t
E=x— / U(1)dr. 31)
0
The relationship between ¥ and the Fourier transform with respect to £, denoted as ¥, is then
"\V — lT/eikfé U(’t’)d‘t. (32)
Substituting (32) into (30) gives the linearized governing equation (25) in terms of  as
Pt — KPP — NP = 0, (33)
We construct the bottom boundary condition by inserting Fourier transform of (27) into
(32) to obtain
o hd ik [fU(1)dT
=——= 0 t z=0. 34
v ik dt (e ) e 34
Here, h designates the Fourier transform of the ridge. Following Bannon and Zehnder [2], at
this point, we restrict our considerations to the background velocity of the form

U =1+ Acos(wyt) (35)
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where both A and @y are constants. With this basic flow, the time derivative in (34) may be
eliminated by introducing the Bessel functions of the first kind (J,,) defined by

y
exp [5 (q——)] ,,); q"Jn (v (36)
where 7 is an integer. For In(q) =i¢, it follows that
- T
=Y (). (37)
n——oo

Substitution of (35) and (37) into (34) with y=kA /@y and ¢ = wyt leads to the bottom
boundary condition

L=k .
p=-h Yy T, (E) ket gt z=0. (38)
n—=—oo k ab
Based on (38), we seek the solution of (33) in the form
- = kAN
y=h Y Wi, (56) ikt aum)t (39)
n=-—oo

where W is the function dependent on z, k and n. Substitution of (39) into (33), reveals that
W must satisfy the second order ordinary differential equation with respect to z

el N ___p

W, e — W =0. 40

wt [(k+won)2 ”] @)

Before discussing a varying stratification, we consider the case of constant Brunt-Viisdld

frequency. In this scenario, the solution of (40) can be determined analytically and it takes

the form

W = Cie™ +Cpe™™ 41)
with m given by
k2 N2 %
= | —— — 42)
(k+ aon)
In (41), C; and C, are functions of k and n. They are determined from (38) and the top

boundary condition.

The form of the upper boundary condition for each k and n depends on whether (41) is
exponential or oscillatory in nature. It is exponential if N?/(k+ won)? — p? < 0. In this case,
the portion of (41) that grows with height is physically unrealistic and it is neglected by
setting C, =0. The solution of (41) then becomes

W =Ce™ with m=i

V B2k + @on)? — N2 43)

k—l—a)on
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with C=Cj. If N2/ (k+ awon)? — u? > 0, (41) is oscillatory. In this regime, (39) indicates that
¥ is the superposition of plane waves with the frequency @ = —(k + awyr) and the vertical
wavenumber that is either a positive or negative quantity (42). The proper sign of m for each
k and n is determined from the radiation condition, which states that d@/dm > 0. In terms of
@y, k and n, this can be expressed as

do _ m(k+ ayn)

= e 0. (44)

Due to the fact that the denominator of this inequality is always greater than zero, the group
velocity is positive and and all energy is radiated outwards if the sign of m coincides with that
of k+ ayn. Consequently, in the oscillatory regime, (41) may be written as

||
k- axn

where C is either C; or C; depending on the sign of k+ wyn. In (43) and (45), C is determined
from (38) to be

W =Ce™ with m= \/NZ — 2k + agn)? 45)

k+ ayn

k
The linear steady-in-the-mean solution for constant N and U given by (35) may now be
written as

C=- . (46)

1 = & KA\ ilioc+mz—kaA J oy sin(aot)+on]
W=ﬁ/_ Y wi, g dk @7

n—=—o0

where W is determined from (43) and (45).

It can be easily verified that for the uniform basic velocity (A =0) and N =1, the hy-
drostatic limit (1 — 0) of (47) reduces to the linear solution of Long [17]. Moreover, in the
absence of the time-invariant component of the free stream (35), (47) is equivalent to the
equation governing the model of Bell [6]. Lastly, (47) is analogous to the solution of Bannon
and Zehnder [2] when the Coriolis acceleration in their model is neglected.

The solution (47) can be computed by using Gaussian quadrature to evaluate the integral
for each n. In that regard, it is important to note that k=0 is an integrable singularity. In fact,
using I’Hopital’s rule, one can demonstrate that the limit k— O of the integrand is finite for
all n regardless of stratification.

The solution of (40) for a varying buoyancy frequency must be determined numerically.
While the bottom boundary condition is given by (38) regardless of the stratification, the
upper boundary condition for constant N can still be used if, following Davis [8], we assume
that above some height z=2z.., N =N... For numerical simplicity, we additionally restrict our
considerations to the hydrostatic response (1 — 0). With these two assumptions, the upper
boundary condition for constant N is given by

il
W = Ce %™, (48)
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and its z-derivative is "
ilk|Neo i _’;_N“’ Zoo
" gt krmgne
K+ oo e (49)
We solve (40) by first guessing the value of C in (48) and (49). From the knowledge of W
and W, at z=2z.., we then use the fourth order Runge-Kutta method to attain W at z=0. The
difference between this computed value, denoted here as Wy, and that required by the bottom

boundary condition (38) gives the error associated with our guess, namely,

W,=C

k+ apn
We update this guess via Newton—Raphson scheme. In particular, the new guess is given by
E..(C)
C =C— =% (51)
E}, (©)
Here, E... is the approximation of the error function’s derivative at C obtained from
Eerr (C+96) —E, (C
Bl (€) = Zer{ €40~ e (O (52)

)

where 6 is a small perturbation to C. Once we obtain W for each k and n, we evaluate (47)
using Gaussian quadrature analogous to the case of constant N.

In all simulations presented in this document, we use k € [—15, 15] with the grid spacing
of 0.025. Moreover, we choose the range of » in such a way that for all values of n outside
this range J,, (kA /@) < 107>, In all computations involving a varying stratification, we use
8 =1077 and the initial guess C= —(k + wpn)/k. We iterate the Newton-Raphson scheme
until |E,,,| <1073,

The numerical method for non-uniform N was tested in two ways. First, we verified that
for N=1 and A =0, the solution coincides with that of Long [17]. Moreover, for A =0 and
a two-layer buoyancy frequency, we confirmed the agreement with the linear (¢ —0) limit of
the response of Durran [9].

Numerical method for unsteady computations

In this study, we solve the unsteady Euler equations (25) using the second-order projection
method developed by Bell and co-workers [3-5]. Lamb [16] implemented this procedure to
uniformly stratified finite-depth flow over locally confined topography and Skopovi [21] al-
lowed for variations in the buoyancy-frequency profile. In the further development, Skopovi
and Akylas [23] applied the numerical scheme to stratified flow of large depth over topogra-
phy by introducing viscous layers that dissipate disturbances leaving the inviscid region and
thus avoid reflections from the boundaries of the computational domain. Here, we addition-
ally extend the scheme to encompass temporal variations in the background velocity.

We implement the time modulations of the free stream velocity U by adding the forcing
function b(¢) to the right-hand side of the horizontal component of the momentum equation.
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This term physically denotes the local time rate of change of the spatially uniform horizontal
background velocity. Therefore, accommodating a particular temporal variation in the basic
flow, from the numerical standpoint, merely entails specifyimg this forcing function. In this
study, we are concerned with a free stream, U, that is the sum of a homogeneous profile and
a monochromatic time-varying component of amplitude A and frequency ay. We computa-
tionally achieve this variation via the forcing function

M sin(zt ift <t,,
b= 21, 1

—A aysinfay (t —1,)] if 1 > ¢,.
We accelerate the flow from rest so that U(0) =0 and therefore (53) yields

1+A n .
v={ "3 1—cos<gt }1ft§ta, (54)

1+ Acos[an(t—1,)] ift>1,.

(53)

The first portion of (53) increases U sinusoidally from zero to some finite value, which in this
study is 14A; thereupon, U is varied harmonically. The gradual turning on of the flow for
t <t,, is necessary to ensure the continuity of the forcing function and therefore provide the
numerical stability of our scheme.

Following Skopovi and Akylas [23], we implement open boundary conditions (26) by
solving the governing equations (25) with the viscous terms added to the right-hand side of
(25a). The kinematic viscosity (V) is spatially varying within the viscous layers surrounding
the inviscid region of interest. Specifically, near the upper boundary, we let

_ -1 . Z—ZOE
v=0.1u s1n(Z_202), (55)

so v increases gradually from zero at the lower edge (z=zp) to v=0.1u~! at the upper
edge (z=2Z) of the viscous layer. The upper edge coincides with the top boundary of the
computational domain. In the side layers, to ensure numerical stability at the inflow and
outflow boundaries, the viscosity is first increased in a way analogous to (55), then is held
constant at 0.1~1 for 50 grid points and finally is brought back to zero again sinusoidally
over the span of 50 points (see Skopovi [22] for details). In all simulations, we used zo=41.
A typical contour plot of the viscosity profile is presented in Fig. 11 from which it is evident
that nearly two thirds of the computational domain are occupied by absorbing layers. In order
to accommodate the bottom boundary of the computational domain where we enforce the
inviscid boundary condition (i.e. zero velocity perpendicular to the topography), viscosity
in the lateral absorbing layers is linearly increased in the vertical direction from zero at the
topography to the layer value over 20 grid points, as indicated by curving contours in the
bottom left and right corners of Fig. 11.

Following Lamb [16], we have used a quadrilateral grid with the higher resolution in the
vicinity of the obstacle. The grid is linearly stretched along both the horizontal and the vertical
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Fig. 11 A typical contour plot of the viscosity profile. Viscosity is gradually increased from the inviscid region (white) to the
maximum value 0.1u~! (black).

such that the height of the bottom cells is 15 times smaller than the height of the cells at the
upper boundary, while the width of the middle cells is 15 times smaller than the width of
the left- and right-boundary cells. All simulations are carried out on a numerical domain that
contains 245 cells in the vertical direction for flows with Z=60 and 205 cells for flows with
Z=150. In the horizontal direction, 1200 cells were used for flows with Z=60 and 860 cells
for flows with Z=>50 while the width of the numerical domain is x € [—30,30] when Z=60
and x € [—22,22] when Z=50. Lastly, in regard to temporal discretization, upon impulsively
accelerating the flow from rest, we use the time step At =0.015.

The computational approach was tested in three ways. We first examined the performance
of viscous layers by comparing the behavior for the inviscid domain bounded by x==10 and
z=50to that obtained with boundaries positioned at x= 420 and z=60. A comparison be-
tween responses with £=0.6, u=1/6,1,=0.05u and wy=12 is presented in Fig. 12. Results
suggest that even with A =0.75, layers at x =110 are effectively dissipating disturbances
by negligibly influencing streamline patterns within the inviscid region. This comparison is
conducted at ¢t =100, which is the largest time associated with our simulations involving the
varying free stream.

As the second test, we confirmed that the computation in Fig. 12 reaches the steady state
and holds it for a substantial amount of time. The comparison between responses at =83 and
t=100 is shown in Fig. 13. It is evident from the figure that steady conditions are reached by
t =83 and that the model is holding this state extremely well.

As the last check, we verified that in the limit € —0 the flow field with A =0.75 and wy=12
approaches the steady-in-the-mean solution predicted by the theory derived in the previous
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Fig. 12 Comparison of the response for €=0.6, g4 =1/6, A=0.75, wp =12, 2, =0.054 and ¢ = 100 when absorbing layers
are positioned at x=4-10 (dashed lines) with that obtained for the same set of parameters when the inviscid region extends to

x=1+18 (solid lines).

10

Fig, 13 Evolution of the flow field for £=0.6, p=1/6, A=0.75, t,=0.05u and &= 12: dashed lines ¢ =83, solid lines =100.
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section. The agreement for €=0.2, u=1/6, and t,=0.05u is presented in Fig. 14(a). With
an increase in € to 0.6, nonlinearity becomes important and the two responses grow apart as
illustrated in 14(b).

We end the discussion of unsteady numerics by reporting that our formulation of the dis-
sipative layer technique did not work in the absence of the uniform stream, that is, when
U = cos(ayt). Under these circumstances, our computations were blowing up. We did not
explore the reasons behind this malfunction because, as pointed out by Lott and Teitelbaum
[18], the case of reversing background flow is not extremely relevant to atmospheric condi-
tions that we are concerned with in this study.

Gradually Accelerated Background Velocity

We explore the significance of nonlinearity in flows featuring temporal variations in the
free stream by gradually increasing the basic velocity according to (54) with A =0. Here, ¢,
then physically denotes the time required to accelerate U from rest to its terminal value U=1]|
Due to the fact that following the initial acceleration the background flow is kept constant, we
expect the response to approach the steady-state solution for U =1, which is that of Long [17]
. With u fixed, the problem under consideration is governed by two parameters, namely, €
and #,. As it is customary for a two-variable problem, we conduct the analysis by first holding
1, constant and varying €. Subsequently, we fix € and allow for changes in ¢,. In each case,
we contrast the resulting response to that obtained with the same value of € and ¢, =0.05u,
which simulates the impulsive startup.

Our fully nonlinear simulations indicate that in the limit of the vanishing topography
height (¢ — 0), there is a negligible difference between the impulsive and the slowly ac-
celerated behavior. This is evident from the comparison of responses for e=0.2 and u=1/6
presented in Fig. 15. The contrast at t =40 in Fig. 15(a), an instant when the gradually in-
creased free-stream velocity has just reached its terminal value, reveals negligible difference
in streamline amplitudes and steepness directly above the barrier. The patterns differ, how-
ever, in the lee of the obstacle and this discrepancy is due to transients of the slowly accel-
erated response, which at this time are still present in the domain of interest. They depart by
t =60 (Fig. 15(b)) and after this point the two flow fields coincide.

An increase in € to 0.6 while keeping u and ¢, constant, generates a profound difference
between the two responses. Particularly, at t =40, as depicted in Fig. 16(a), streamline am-
plitudes of the slowly initiated flow are now nearly twice as large as their rapidly actuated
analogues. Although in this simulation wave breaking did not occur, we note that streamlines
corresponding to the accelerated field are much steeper and are nearly at the point of over-
turning. As transients move out, the progressively excited behavior once again approaches its
impulsive counterpart. In comparison to the previously discussed case with £=0.2, however,
steady state is reached at a much later time, ¢ =140, as indicated in Fig. 16(b).

The described behavior for the fixed € and two different acceleration times, 0.051 and
40, suggests that for each value of ¢, there is a distinct nonlinearity parameter for which
wave breaking takes place. Correspondingly, we have further utilized our unsteady numer-
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Fig. 14 Comparison of the behavior predicted by the unsteady model at ¢ = 100 (solid lines) and that forecasted by the linear
steady-in-the-mean theory (dashed lines) for u=1/6, A=0.75, =12 and 1, =0.051 (a) €=0.2; (b) €=0.6.

ical model to build the diagram in Fig. 17 that illustrates this relationship for p=1/6. As
anticipated, the chart indicates that as the value of € decreases, it takes larger ¢, to produce
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Fig. 15 Comparison of slowly (solid lines) and impulsively (dashed lines) accelerated streamline patterns for €=0.2, £ =1/6
and £, =40 at (a) t =40; (b) t=60.

breaking. It is important to point out that we did not pursue computations for values of &
that are less than 0.6 as their corresponding acceleration times are physically meaningless.




29

Fig. 16 Comparison of slowly (solid lines) and impulsively (dashed lines) accelerated streamline patterns for e=0.6, p=1/6
and ¢, =40 at (a) t =40; (b) r=140.

This is because they are of the order of a day(s) and, as mentioned earlier, we expect these
flows to typically last for several hours or less. We lastly stress that the attained acceleration
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times are accurate within £2 of the plotted values. This tolerance is indicated by the error
bars surrounding each point on the graph. They were obtained by refining the resolution of
the simulation for £ =0.6 until the breaking time did not significantly change any longer. The
computed points are also dependent on the long-wave parameter although for 0< u < 1/6 this
dependency is expected to be mild. This conclusion is based on the fact that the hydrostatic
solution wave-breaks for € =0.85 while its counterpart with @t =1/6 breaks at the slightly
lower value, € =0.82.

1.0
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Fig. 17 Wave breaking as a function of the nonlinearity parameter and the time to acceleration for g =1/6.

The underlying conclusion of this investigation is that temporal variations in the incident
flow in combination with nonlinearity may give rise to large amplitude transients, which are
ignored by the previously constructed models. As a result, these earlier efforts underestimate
the size of the topography generated atmospheric buoyancy waves.

High-Frequency Sinusoidal Modulations

We now turn to an investigation of the flow field generated when the background velocity,
in accordance with (35), is a superposition of a uniform stream and monochromatic temporal
variations. In discussing these flows, we limit our considerations to oscillation amplitudes that
are smaller than the steady component (A < 1), so that the basic velocity does not experience a
change in direction. Moreover, in this section, we concentrate on the high-frequency regime
(wp — o) of these modulations and we postpone the analysis of general frequencies to the
next section.
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In the limit @y — oo, the steady-in-the-mean solution (47) for a uniform stratification and
1 — 0, as analytically demonstrated by Bannon and Zehnder [2], is identical to the behavior
with the incident wind U = 1. In other words, the transience in the background velocity does
not impact the response; hence, at time instances when the basic flow is unity, (47) coincides
with the linear solution of Long [17]. Our numerical simulations reveal that with A =0.75,
the two hydrostatic streamline patterns essentially coincide when @ is roughly 200. As the
value of U increases, however, the frequency at which the agreement between the behavior
with A =0 and that with A =0.75 takes place rapidly diminishes. In particular, according to
our computations, for it =1/6, the accord is reached when @y =6, which upon the conversion
to the dimensional form corresponds to the atmospheric Brunt-Viisild frequency. We also
find that aforementioned conclusions are unaffected by variations in the buoyancy frequency
as the steady-in-the mean solution (47) for A =0.75 and @y =6 matches the linear (¢ —0)
response of Davis [8] when the stratification is given by

N =1.5+0.5tanh[c (z—d)]. (56)

with c=2 and d=3.

The behavior exhibited by the linear response also persists in the nonlinear regime. This is
concretely evident from the comparison of the resonant flow field in Fig 2(a) of Skopovi and
Akylas [23] with that obtained for the same stratification profile and the background velocity
(54) when 1, =0.05u, A = 0.75 and ay = 12. The plot of the two flow fields at # = 100,
illustrated in Fig. 18, reveals that streamline patterns are nearly identical.

We lastly point out that in agreement with conclusions of the previous section, we find that
the amplitude of transients produced by temporal variations in the basic velocity increases
with the decrease in wy. This feature dominates at lower frequencies of temporal free-stream
oscillations, which we consider next.

General Frequencies

In this section, we discuss the flow field produced when the modulation frequency in
(35) is of the order of few hours. As before, we conduct the analysis by first examining
propetties of the linear steady-in-the-mean solution (47) and then we consider the effects of
the nonlinearity and transients.

When the frequency of monochromatic modulations in (35) is @y =0.35 and u=1/6, the
steady-in-the-mean solution (47) qualitatively retains the properties of the response with the
uniform incident velocity. Particularly, in the presence of the resonant buoyancy frequency
given by

N%(z) = 14 p2{0.25sin(2z)} . (57)

the solution for A =0.75 exhibits the resonant behavior in a sense that the output of our
numerical algorithm does not converge to a physically realistic solution. We were unable to
verify if the resonance persists at lower values of @y as these simulations necessitate a larger
range of n, which in turn increases the cost of our simulations.
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Fig. 18 Comparison between the response with the uniform (dashed lines) and monochromatically varying (solid lines) basic
velocity for €=0.6, u=1/6, A=0.75, oy =12, 1,=0.05¢, F=1 and ¢ =0 at t =100.

In addition, our computations indicate that the hydrostatic limit of (47) for wy=0.35 and
A =0.75, analogous to models of Davis [8] and Durran [9], can be tuned by adjusting the
tropopause height. For the stratification profile (56) with ¢ =2 and d =23, we find that in the
range d € [2,27) the response is maximized when d =37/2 and minimized for d =37/4
(Fig. 19). These values are in contrast to the @y — oo limit where the linear flow field is tuned
or detuned depending on whether d is an even or an odd multiple of /2 respectively.

In accordance with our findings earlier, gradual monochromatic temporal free-stream
modulations in the presence of nonlinearity produce transients whose amplitude grows with
time. This is concretely demonstrated in Fig. 20, which compares the response for € =0.6,
u=1/6 and ¢, =0.05u at two different times, namely, 2.5 and 12.5, when the background
flow in Fig. 20(a) modulates with the amplitude A =0.75 and the frequency @y =0.63. The
two times are therefore exactly one period of the incident flow oscillations apart. It is evident
from Fig. 20(b) that streamlines corresponding to # =12.5 are much larger in amplitude and
steeper than those associated with £ =2.5. This in turn suggests that similar to the resonant
buoyancy frequency oscillations studied earlier, gradual variations in the basic velocity may
produce overturning of density contours well below the critical amplitude of the topography
predicted by the model of Long [17]. Unfortunately, we were unable to carry this simulation
to the point of wave breaking as transients generated by the gradual basic flow variations
eventually become so large that our viscous layers are unable to absorb them even with an
increase in the value of v.
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Fig. 19 Linear steady-in-the-mean solution for £=0.2, p=1/6, A=0.75 and wy=0.35 when the buoyancy frequency is given
by (56) with c=2: d =3 /2 (solid lines) and d =37 /4 (dashed lines).
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